QUADRATIC POISSON STRUCTURES IN DIMENSION
FOUR

FRANK KLINKER

ABSTRACT. We present here a complete list of quadratic Poisson struc-
tures in dimension four. For details on the decomposition of quadratic
Poisson structures see [1].

1. THE TooLs

We shortly recall some results and notations taken over from [1].

We consider the volume form ¥ on an oriented n-dimensional manifold M.
¥ induces an isomorphism of poly-vector fields and differential forms W :
XF(M) — Q"=*(M). This isomorphism defines a derivation D : X*(M) —
X1 (M) by D =9"todoW. We denote the set of polynomial poly-vector
fields by B¢ € X¢(M). The set of polynomial poly-vector fields is bi-graded
B = P, P! with

P = SHQM)) @ AY(X(M)).

PFL decomposes with respect to sl,, into two irreducible components *¢ =
Vit @ Vig—1,0—1. The derivation D is of degree (—1 — 1). when restricted to

mk,é

Theorem 1.1 ([1]). Every polynomial poly-vector field A € P*0 admits
a unique decomposition A = Ag + Ay with Ay € Vg C ‘ﬁ(k’@ and A, €
Vic10-1 C PO Eaplicitly we have DA = DAy, DAy = 0, A; = DANA
(k&)

et e,

A= Ag+DANeFD (1)
1
. (k) _ m
with e 7n—|—k—€$ O -
The Schouten bracket [-,-] : X¥(M) x X(M) — X*+=1(M) yields the fol-

lowing Theorem.

Theorem 1.2 ([1]). Let A € P*O and ¢ even with A = Ag + DA A e
cf. Theorem 1.1.
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(1) Suppose k # €. Then [A,A] =0 if and only if

20 —k)
|:A07A0} — mDA/\AO (2)
(2) For k = we have [A, A] =0 if and only if
[Ao, Ao] = [DA, Ag] =0. (3)

In dimension four we deal with quadratic bi-vectors and their trace given
by linear vector fields. A Poisson structure II is described by a pair (Ily, A)
where IIy is a trace free Poisson structure and A is linear vector field that is
compatible with ITy in the way that L4Ily = [A, IIy] = 0 holds, see Theorem
1.2. The linear vector field encodes the trace of II and so is trace free,
i.e. A € sly. Furthermore, because Ily is trace free there exists a cubic
tri-vector field L such that IIs = DL. If we consider the isomorphism
U XF(M) — Q" F(M) we may write L = ¥~ with a cubic one-form 6.
The trace free bi-vector is then given by IIy = ¥~'df. This explains the
notation for the trace free part of II. The compatibility condition may be
reformulated by

[A,TTg] = D(AATIY) =¥ todoW(AATY) =TV todory o, ¥
=V todoigdd =V (—140d?0+Ladf) =V LoLpdd (4)
=Vt odLaf =TIy 6

and, therefore, reads as
(i) La0 =0.

The Poisson condition on Ily translates to 6 in the following way. The
commutator of IIy with itself is a tri-vector field and via ¥ a one-form. We
look at its components

(\I’ o [HQ,H@])m = (\I/ o D(Hg N Hg))m = am\If(Hg AN H@) .

The function W¥(IIy A Ilg) that is the only coefficient in df A df is a homo-
geneous bi-quadratic polynomial. Its derivative vanishes if and only if it
vanishes itself. So the Poisson condition on IIy can be written as

(i) dO A df = 0.

To characterize all quadratic Poisson structures in four dimensions we have
to look for pairs of one-forms 6 with cubic coefficients and trace free matrices
A such that (i) and (ii) are fulfilled. We write IIy 4 for the resulting Poisson
structure. We call a one-form and a matrix compatible if they obey condition
(i). This is a linear condition on the coefficients of the one-form. Because
of Remark 1.3 below — which is an easy consequence of the compatibility of
the wedge product and the Schouten bracket —, the compatibility of ¥ with
linear diffeomorphisms, as well as (i) and (ii), we may restrict ourselves to
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matrices A that are in Jordan form. Condition (ii) is non-linear and yields
algebraic relations of degree two for the coefficients.

Remark 1.3 ([1]). IIy 4 and II, p are Poisson isomorphic if and only if
there is a linear isomorphism L such that

n=detLL*0, and B= LAL'.

For the explicit calculations in (i) we expand the cubic one-form in the form
0 = 0,.dz* and

0y, = Z Oksmnor " x" x° (5)

0<m<n<o<3
with (20, 21, 22, 23) := (t, 2,9, 2). For A € sl; we have

: .00
L0y = A'0; + Aljxfafgc’j (6)

and Laf = 0 is a system on the 80 coefficients Op.mno. We write the coef-
ficients of the one-forms as vectors in the basis of the cubic polynomials as
given in (5). In view of (6) and the restriction to the Jordan form of the
matrix A we only need the following vectors:

(ek, t8t0k7 xaﬂ/‘eka yayelm Zazeku taxak) xayelm yazelm ﬂ:'atek, Zayek) =

Or.012 Ok:012 Ok012 Oroi2 0 20k112 208000 Ok;013 20k002 O

Or.013 k013 Ok013 0 Oro13 20k113 Ok023 0 204,003 Or012
Or.023 Ok;023 0 Oro23 Oro2z Oki2z 0 20p330 0 20k220
Ori23 0 Orio3 Opi23 Oria2z 0 203093 204331 Op003 208201

Or.001 20k.001 Oki001 O 0 20k110 k002 0 30ko000 O
Or.002 20002 0 Oroo2 O Oroiz O Oroos O 0
0003 20k,003 0 0 Orooz Ok013 O 0 0 Oro02
Or110 Ok;110 20k110 O 0 30ki11 Okoi2 0 20k001 O
Ok 0 20p112 Oz O 0 20k201 Ok;113 Ok012 O

Opai3 0 20113 0 Oz 0 Opaaz 0 Ok013 Okine
Or:220 Or220 0 20220 0 Op2r 0 Orooz O 0

Oroo1 0 Opoo1 20001 O 0 30k202 Ok123 Ok220 O

Or.223 0 0 20k203 Ok203 O 0 20332 0 30k202
Or:330 Orizz0 O 0 20k330 Ok331 O 0 0 Oro23
Orzzst 0 Orzzr 0 20k331 0 Okzza 0 Opzzo Okiios3
Or.332 0 0 Okrazz 20k332 O 0 30k333 0 20993

k000 30k;000 O 0 0 Okoor O 0 0 0
Opa11 0 3011 O 0 0 Oz 0 Ogio O
R\ 0 30ko0m O 0 0 Ok O 0
Or.333 0 0 0 30ks333 O 0 0 0 Okaso
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2. THE LisT

We use the notations developed above and examine the different possibilities
of the Jordan form of the matrix A. We list the compatible one-forms, i.e.
the one-forms that obey (i). In most cases we furthermore give the algebraic
relation for the coefficients, see condition (ii). For special solutions we write
down the Poisson structure associated to the one-form. After all we have to
distinguish 43 different cases.

a

[A]l: A= c witha+b+c+d=0:
d

[A.1]: a,b,c,d nonzero

[A.1.1]: |al, |b],]|c|, |d| distinct and nonzero

We have to consider two subcases

[A.1.1.1]: |a|, |b], |c], |d| distinct, nonzero, and no further coefficient in L 46
vanishes.

In this case the only one-form compatible with A is
O = Yoxyz dt + Vtyz de + Jotxz dy + Vstry dz (7)

This one-form also obeys d©aAd©a = 0such that 115 := Ilg, is a quadratic
Poisson structure, explicitly

IIa = Go3tx O A O + U31ty O A 8y + 19tz 0p N\ O,
+ o3y Op A 8y + Yopxz2 0 A O, + Vo1yz ay A O,

with 9;; := 9J; — ¥;. In particular, only the coefficients I1;;* are present.
[A.1.1.2]: |a|, |b], |c], |d| distinct, nonzero, and b = —3a.

This is the exceptional case where at least one more coefficient in L 460 van-
ishes although all entries in A have different absolute values. This coefficient
is of the type (3a + b). Because the problem is symmetric in a, b, ¢, d this is
the only possibility. We write A = a - diag(1, —3,k,2 — k). To stay in the
case of nonzero eigenvalues of distinct absolute values we have to exclude

k=+1,43,5,0,2.
We have to consider two subcases.

[A.1.1.2.a]: k#—3,1,-7,9
In this subcase the one-form compatible with A is given by

0 = O + t*(azdt + Gt dx) (8)
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With df = dO 4 + (3& — a)t2dt A dz condition (ii) yields
(3@ — 04)1923 =0.
and the two possibilities are

° 3d:aand.

[ ’1923 = 0, ie. 192 = 193 and

Iy = P21t(y O AN Oy — 204 N Oz) + Vo2 (y O N Oy — 20, A 0)
+ (Qt2 + 1901yz) 8y A Oy

with a := 34 — «a.
[A.1.1.2.b]: ke {-%, %, -7,9}

These cases are the same up to renaming the variables, so we choose k = 9.
In this case the one-form compatible with A = a - diag(1, —3,9,—7) is given
by

0 = Oa + t*(ax dt + &t dz) + 2%(Bydx + Pz dy) (9)
The quadratic relations that single out the Poisson structures are given by
(36— a)d3 = (36 — B) 30 = 0. (10)

We assume Yoz = U39 = 0, ie. 3 = P9 = ¥9. With a := 3& — « and
B =3B — [ this yields the Poisson structure

My = P31ty Oy A Oy + (Ba* — 931t2)0; A O + (at? + V31y2)0y A O .

[A.1.2]: a =b and |al, |c|,|d| distinct and nonzero

[A.1.2.1]: a = b and |a|,|c|, |d| distinct and nonzero and no further entries
in L 460 vanish.

The one-form compatible with A is given by
0 =Oa +yz(atdt + dxdz) + t2(Bzdy + By dz) + 22 (vzdy + Jy dz) (11)

To yield a Poisson structure the coefficients have to satisfy the following
equations

Bla—24) — Bla—27) —a(y —7) —
O3(a — 2B) — Va(a — 2B) + (Fo + 91)(8 — B)
V3(& — 27) — V2(& — 29) — (Yo + V1) (v — )

(12)

|
o o ©

Two sample Poisson structures are:

a. B=Pp,v =4, and Y3 = 0 with
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Iy = Yo1yz 0y N 0 — (Vo2 — nt)2 Op A 05 + (Vo2 — nt)y Oz A Oy
+ (1912t — fac)z O NO, — (1912t — §x)y oy A 8y

b. ¥y =5 =0, 99 = -1, 7= 6, 5= and a = & with

Iy = 201y20, A D: + (£ + 22)(3 — B)
—(hax —nt)z 0, N O, + (V1x — 1t)y Oy A Oy
— (Nt +nz)z 0 N0y + (1t + N )y O A Oy

where £ .= & — 2y, n:=a— 28 andf]::a—2/3’
[A.1.2.2]: a = b and |a|, ||, |d| distinct and nonzero and a = —3¢

As in case [A.1.1.2] the additional coefficient that may be zero is of the type
a + 3c. The symmetry in the entries a and ¢ (resp. d) is broken so that we
also have to consider the case 3a + ¢. But the vanishing of the latter would
let the matrix be A = a - diag(1,1,—3,1) which contradicts a # d. So we
are really left with a = —3c or' A = ¢ - diag(—3,—3,1,5) with compatible
one-form
0 =0Oa +yz(atdt + axdr)
+ t2(Bzdy + By dz) + 22 (vz dy + 4y dz)

+ 2 (dy dt + 5t dy) + y*(éy dz + exdy) (13)

In addition to (12) condition (ii) yields
(36 — 0)(2% — &) + (3¢ — €)¥30 =0

(3¢ — €)(26 — @) + (30 — )93 = 0 a4

We get a new solution for 3 =B, =793 =0, and { = =91, n = =0
as well as e := € —3€ =0 — 39 =: J (see [A.1.2.1]):

Iy = Yo1yz 0y A 0; — (Vo2(x — t)2 + 0y2)0z A O, + Voa(x — t)y Op A Oy
+ (1912{15 - LE)Z + éyQ)at N0, — 1912(75 — x)y O N 6y .

[A1.3]: a=—-b#0,c=—d#0 and |a| # ||

[A.1.3.1]: a = —b#0,c=—d #0, |a|] # |c| and no further entries in L 460
vanish.

iThis is k = —3 or 5 in [A.1.1.2].
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The one-form compatible with A is given by
0 = O + at(axdt + atdz) + yz(Bz dy + By dz) (15)
and the relation that determines the Poisson structure is
(8= B)a—a)=0
(0 —&)23 =0 (16)
(B—B)dor =0

In this case we have two new solutions that are related by interchanging the
connected pairs of variables (t,x) <+ (y,2). E.g. 8 — =3 =0:

Iy = Vo1t(y Oy N Oy — 20y N O2) + Vo2x(y Op AN Oy — 20, N O)
+ (Yoryz + atx)oy A 0,

with & = 2(a — @).
[A1.3.2]: a=—-b#0,c=—-d#0,a=—3c
As before the remaining possibilities are symmetric to this one. The matrix
is" A =c-diag(—3,3,1,—1) and the compatible one-form
0 = O + xt(axdt + atdr) +yz(Bzdy + By dz)
+ 2 (yydt + At dy) + 226z dx + bz dz) (17)

There are contributions to (16), namely
(5 = 37)031 = (5 — 38)020 = (6 — 38)(§ — 37) =0
and new Poisson structures is given by

6_32192320&11(11931:3—3520:

Iy = (Vs0zz + lyQ)az A 0 + (Vozyz + dat)0y A 0, + Vozxy Or A Oy

with v =3y -4, d =30 — 9.
A similar solution is obtained by choosing 8 — B = 193 = 0 and Y99 =
4 —3y=0"
[Al4]: a=b=—-c=—-d#0,ie A=a-diag(l,1,-1,-1)
iThis is k = —1 or 3 in [A.1.1.2).

iThere was a mistake in an earlier version that led to an additional wrong solution.
Thanks to Prof. Hasan Glimral for pointing that out.
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The one-form compatible with A is given by

0 =0Oa + yz(artdt + dqx dx)
+2(Brzdy + Py dz) + 2% (2 dy + 1y dz)
+ tx(ay dy + Gozdz)
+ 32 (Box dt + Bot dz) + 2%(vyax dt + Aot dx)
+ ty(1y dt + 01t dy) + tz(0az dt + bat dz)
+ xy(d3y dx + b3z dy) + x2(042 dx + b4 d2)

The Poisson structures are due to (ii) singled out by the following system
on the coeflicients:

0= 2(8; — 61)%13 + (Br — B1) (B2 — Bo) — (a1 — 2B1) (2 — 252)
0 = 2(8y — 02)021 + (B1 — B1) (72 — F2) + (o1 — 261) (2 — 292)
0= 2(83 — 03)930 + (71 — A1) (B2 — Ba2) + (61 — 291) (2 — 232)
0= 2(84 — 04)¥02 + (71 — 1) (72 — A2) — (41 — 27) (G2 — 272)
0= (B1— 1)W1 + Vo) + (a1 — 2B1)92 — (a1 — 2B1)V3 + 2(az — 232) (32 — d2)

— (@ — 2%2) (61 — b1)

0= (v — A1) (V1 + Vo) — (61 — 291)02 + (41 — 2y1)03 + 2(Ag — 272)(J3 — J3)
— (g — 282) (84 — b4)

0= (B2 — B2) (U3 + V) — (ag — 2B2)00 + (2 — 2B2)91 + 2(a1 — 251)(J3 — d3)
—2(61 — 291) (61 — 67)

0= (v2 = 42) (V3 + V) — (62 — 292)00 + (2 — 272)th — 2(41 — 271)(62 — J2)
+2(1 — 261) (64 — ba)

0 = 4(0y — 02)(03 — d3) — 4(51 — 61)(84 — b4) — (G2 — 292) (2 — 232)

— (61 — 2%1) (01 — 2B1) + (G2 — 272) (a2 — 2B2) + (41 — 271 ) (o1 — 251)
(19)

[A.15]: a=b=c=—3d #0,ie/V A=a-diag(l,1,1,—-3)

VThis is k = 1 in [A.1.1.2).
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The one-form compatible with A is given by

0 = Oa + yz(aitdt + dz dr)
+(Brzdy + Bry dz) + 2*(mz dy + 1y d2)
+ xz(aot dt + Gy dy)
+ t*(Boz dx + Box dz) + ¥ (yoz dx + Aoz d2) (20)
+ tz(azzr dx + dgy dy)

+ 2% (Bsz dt + st dz) + y* (32 dt + A3t dz)
+ t3(6y 2 dt + o1t dz) 4 2%(89z dx + dox: dz) + y* (932 dy + b3y dz)

[A.2]: a,b,c nonzero and d =0
[A.2.1]: a,b,c distinct, nonzero and d = 0

We do not have to consider the absolute values of the entries of A because
of the trace condition.

[A.2.1.1]: a,b,c distinct, nonzero, d = 0 and no further entry in L40
vanishes.

In this case the compatible one-form is
0 =04x+10:°dz (21)

The Poisson structure is the same as in case [A.1.1.1], because d(23 dz) = 0.
[A.2.1.2]: a,b,c distinct, nonzero, d = 0 and b = —3a,

This is up to symmetry the only possibility for additional nonzero entries in
L 40 and the only matrix obeying this condition is A = a - diag(1, —3,2,0).
The compatible one-form is

0 = 04 + V23 dz + t*(ax dt + Gt dx) (22)

The Poisson structure is the same as in [A.1.1.2.a].

[A22]: a=b=—3c#0=d

Le. A=a-diag(1l,1,—2,0) with compatible one-form

0 = Oa +102°dz + yz(at dt + Gz d) + t2(Bz dy + By dz) + 2% (yz dy + 4y dz)

(23)
the Poisson structure is the same as in [A.1.2.1].

[A3]: a=—-b#0andc=d=0
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Le. A=a-diag(1l,—1,0,0) with compatible one-form

0 =0Oa+ 1§1y3 dy + 19223 dz
+ tx(ay dy + éz dz) + y? (B dt + pit dx) + 22(Box dt + fot dx)
+yz(d1zdy + 51y dz) + xt(dox dt + St dx)
+ 92 (er1zdy + é1ydz) + 22 (éazdy + exy dz)  (24)

Condition (ii) is equivalent to

2(81B2 — P1B2) + (B2 — Ba) — &(B1 — B1) =0
D1(a —2B1) — Bo(a — 2B1) + (V2 +93)(B1 — 1) + (92 + 02)(B1 — B1) = 0
D1(a — 2B) — Fo(a — 2B2) + (V2 + 93)(Ba — B2) + (52 + 02) (B2 — B2) = 0
(e1 — 3&1) (Yo — 1) +2(31 — 81)(B1 — B1) = 0
(€2 — 32) (Vo — V1) — 2(01 — 01) (B2 — B2) = 0
(1 — 361) (B2 — B2) — (e2 — 3é2)(B1 — Bu) + 2(61 — 01) (Yo — ¥1) =0
(1 — 3é1)(B1— 1) =0
(€2 — 3&2)(Ba — B2) =0
(25)

Two solution with associated Poisson structures are given by

a. 61 = Bla 52 = BQ and %1 = Y9 with

IIy = ((1923 + Sg)xt + 261yz — ggf + 222)8t A Op
+((V12 + 82)z + ny) (t0r A 0 — 20, A Oz)
+((W13 + d2)y + £2) (20, A Dy — Oy A D)

b. P9 = —3, 09 = g, a =G, f1 = P, f1 = Prand Vg =V = ) = ¢; =
e =0

Iy = 51(3/2 + 22)8y A0, — 2(192 + 52)$t O N Oy
+((’l92 + (52)y + ﬁz)t&t VAN 8y + ((192 + 52)2 + ﬁy)t(‘?t A O,
(9 + 62)y + 1) w0y A By — (03 + 82)z + ny) 20y A D

with By := B1 — B, i i= 6 — 0y € 1= € — 3¢, = — 2p1, & 1= & — 2,
and 7 := a — 201.

[Ad]: a=b=c=d=0
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The compatibility condition is empty in this case. This means that all one-
forms are compatible with A = 0.

a 1

[B]: A = “ with b+ ¢ = —2a
c

This is the case of one Jordan block of size 2. The coeflicients that belong
to the variables t and x are coupled and the symmetry, which could be seen
in [A], is broken.

[B.1]: a, b, ¢ nonzero
[B.1.1]: a,b, ¢ distinct and nonzero
[B.1.1.1]: a,b, ¢ distinct, nonzero and a # —3b and a # —3c¢

This is the case where no further coefficient that involve a, b, ¢ in the Lie
derivative vanishes. The compatible one-form is given by

Op = Votyz dt + V1yz(z dt — t dz) + t2 (922 dy + Vay d2) (26)
The derivative of this one-form is
dOp = V1z(tdx Ndy — ydt A dx — x dt A dy)
+Ny(tde Ndz — zdt ANdx — xdt A dz)
+ (9 — 92)t2dy A dz + (209 — 9o)tz dt A dy + (202 — Do)ty dt A dz

obeys dOg A dOpg = 0, and the associated Poisson structure is

IIg = 1912(t8t/\8z —yay NO, + 0, /\az)
— D1yt Oy N Oy + 20y N O, + 0y N\ Oy)
+ (D9 — 92)t2 8 A Dy — (202 — Do)tz 0y A D, + (202 — o)ty Du A D,

[B.1.1.2]: a,b, c distinct, nonzero and a = —3b

This is — up to symmetry — the only case where one more coefficient in L 46
vanishes this gives two more solutions, namely

0 = O + y*(aydt + at dy) (27)
Condition (ii) translates into
Ba—a) =0 (28)

and we get a new Poisson structure, different from [B.1.1.1], for ¥; = 0. Le.

IIy = (&2 — 192)t2 O N Oy + (2’[92 — ﬁo)ty Og N Oy
— ((202 — Do)tz + ay?) 9 A O
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with o = & — 3a.

Remark 2.1. Here and in what follows we always get new solutions by
sending the coefficients to zero that comes with the coupled terms and we
will discuss these cases in particular.

[B.1.2]: a=—-b=—c#0
The compatible one-form is
0 = Op + (ay? +a22) (x dt —t da) +yt(By dt+ Bt dy) + zt(yz dt+At dz) (29)
We get the following equations from (ii)
&(—B) +aly=4) =0
200y + 92 — o) — (B — B)h =0 (30)
260y + 92 — Do) — (§ — )91 =0

with the two sample solutions

a. a=a=1v9 =0, ie.

Ty = (9 — 92)t20; A Oy + (72 + (202 — 90)y)t Ox A Dy
—(By + (202 — 90)2)t D A O

with 3 =2(8 — B) and ¥ = 2(% — 7).

b. 4 =7, B:Band 192—!—792—190 = 0. (i.e. 2192—190 2792—192 and
205 — 9y = Do — D), L.e.

Iy = (2ay + %12)(t O A O, + 0y N O, — y Oy A D)
—(26z + y) (EO N Oy + 20y N O + 20y N Dy)
+(0 — V)t (2 0y N D +y Dy A Dy + 10y A\ Oy

[B.1.3]: a=b=—1c#0

The compatible one-form is

0 = Op + atz(zdt — tdz) + t3(Bzdt + Btdz) + y*(vz dy + Ay dz)
+ 2 (8zdt + Ot dz) + etyzdy  (31)
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The relations that single out the Poisson structures read
3oy — 39) + 01(6 + € —38) =0
a(6+e—35)=0
Y1(y—37)=0
a((209 — 9p) + (g — ¥2)) +91(8 —38) =0

with the particular solutions

(32)

a.a=1% =0

Iy = ((92 — 92)t% + (20 — €)yt +7y?) O A O,
+ (202 — Vo)ty + (5 — 8)y? + B2 ) 8, A B,
— (292 — Do)tz — (26 — €)yz) 0y N O,

withézﬁ—i%ﬁandl:*y—fﬁ.

b. B=38=~7-39y=0,€e=25 =26 and 205 — 9y = —(Jy — 1) (&
209 — 9o = —3(Js — ¥2))

g = 012t ND, —yOy AD. + 10y AD)
—(y+at)(t O NOy+ 20y N O, + 0y N Oy)
+ (Do — Do)t A Dy + 3L, AN, — 1D, A D,
—2atz 0y N\ O,

[B.2]: a=—3b#0and c=0
The compatible one-form is

0 = Op + az’dz (33)
For the associated Poisson structure see [B.1.1.1] because d(z3 dz) = 0.

[B.3]: a=0and c=—-b#0

0 = Op + at’(zdt — tdz) + Bt3 dt + yz(yzdy + 4y dz) (34)
This one-form induces a Poisson structure if and only if the following holds
— cf. (ii)
a(y —v)=0
Oé(1§2 — ’192) =0 (35)
h(§—=7)=0
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As before we have two special solutions

a. o« =11 = 0 with

IIy = ((292 — 192)t2 + ’Vyz) Oy N\ Oy
— (209 — o)tz 0y A D, + (209 — Do)ty Dx A Dy

b. 93 =y and ¥ :=2(3 —7) =0

Mg = 12(tOy N0, —yOy NO> + 20y N Oy)
+ (202 — Do)t (y 8 A Dy — 20, N D) — 4at?Dy A D,

[BA4]: a=b=c=0

0= (a1t2 + oty + astz + aay® + asyz + oz6z2)(x dt — tdx)
+t°(Bodt + 0 dy + 0o d2) + t*y(Br dt + v dy + 6y d2)
+ t22(Ba dt + o dy + 02 d2) + ty*(Bs dt + 3 dy + 63 dz)
+tyz(Badt + yady + 04 dz) + t2%(Bs dt + 5 dy + 65dz)  (36)
+ 4> (Bs dt + 6 dy + 86 dz) + y*2(B7 dt + 7 dy + 07 dz)
+y2?(Bs dt + s dy + 63 dz) + 2°(By dt + o dy + 69 d2)
a 1
cra=| ¢!
—3a
This is the case of one Jordan block of size three.
[C.1]: a#0
The coefficients that vanish non trivially are derived by evaluating
((La60)o23, (L ab0)113, (Lab1)013) =
= ((LaB0)123, (L ab1)023, (Lab1)113, (Lab2)013) = 0.
The compatible one-form is
0 = t*(azdt + atdz) + Btz(x dt — tdx)
+ §tz(ydt — xdx + tdy) + (2% — 2ty) (ezdt + étdz) (37)
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and has to fulfill

B(3¢—e+3)=0 (38)

to produce a Poisson structure.

We have one solution (8 = 0) where the term that couples x and ¢ is missing.
This is given by

g = (at? 4+ (Fy — 2T )ty + 3(T'1 — T2)a?) 9, A 9,
—T1(2 0 N Oy + tw Oy NOy) —To(tz 0, AN O, + 220y A D)

witha: =3¢ —aand 'y =2¢+daswell as'g =2e+0

A second solution is given by 3¢—e+4& = 0 — which is the same as 3['1—I's = 0.
The associated Poisson structure is now

Iy = (at® — Btz) Oy A Oy + B(3tz 0y A D, — 120, A D)
+I' ((ty — 22)0, A Oy — t20, A Oy — txdy N Oy — 3t20, N\ 0, — 3x20y N 8Z)

[C.2]: a=0

The compatible one-form is

0 = t*(azdt + atdz) + B(z* — 2ty)t dz

+ (mtz + Yot + 4322 + (2 — 2ty)) (z dt — tdz)
+ (6122 + Oot? + 0322 + 64(2 — 2ty)) (y dt — x dx + t dy) (39)
+ (e12 + eot) (2% dt — 2tz dx + 2% dy)
+ (,U1t3 + ,u2t2z + ,u3t22 + ,u42’3)dt
0

O =

[D]: A=

O =
O =
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The one-form compatible with this matrix is
0 = at®(xdt — tdx) + frt(z? dt — 2tz dx + 2 dy) + Bot*(y dt — x dx + t dy)
v((3t2* — 3ayz + 3y°)dt + (322 — yPx — 3tyz)da
+ (4t%y — 2y — 3taz)dy + (23 — Stoy + 3t22)d2)
+ 01 ((313227 — 3tyz — ylx)dt
+ (4y? — 3taz — 2%y)dx + (25 + 322 — 3twy)dy)
+ 52(1’2 - 2ty)(zdt —ydr +xdy — tdz)
e1(2® — 3tay + 3t%2)dt
€2 ((4y2t — 2y — 3txz)dt + (23 + 3%z — 3tay)dz)
e3(2® — 2ty) (v dt — tdz)
+ 64(m —2ty)(y dt — xdx + tdy)
+ est?(zdt — yda + 2 dy + 2 dt)

€1

(40)

[E]: A=

[E.1]: a #0
In this case the compatible one-form is
0 = ty(ay dt + at dy) + ty(B(z dt — ydz) + B(tdz — zdy))
+ (tz — xy) (yy dt + At dy) (41)
+ (tz — 2y) (6(z dt — ydz) + 5(t dz — zdy))
Due to condition (ii) the Poisson structures must obey
§—6=0
(B=B)((B=5)+(r+7) =0

§ = 4 eliminates the derivative of the last summand in (42) so that it does
not enter into the Poisson structure. A sample poisson structure is given by

§=B-B8-
Iy = dtydy A O.n(t? 0y N Oy — y* 0y A D)
+E(ty Oy N O + 20, NO.) + C(ty Oy A O, + xy Oy A D)

(42)

with & = 2(a — &), n:= 5 —, £ :=38—26— v, and ¢ := 26 — f — 7.
[E.2]: a=0
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The compatible one-form is
0 = ty(aqy dt + aat dy) + yt(ast dt + oy dy)
+ (1 dt + fig dy) + £ (p dt + fiy dy)
+ty(B1(zdt — ydz) + Bi(tdz — z dy))
+ ty(B2(2dy — y dz) + Bo(x: dt — tdz))
+y?(e1(zdy — tdz) + ea(zdt — yda) + é3(z dy — y dz)) (43)
+t*(e1(2dt — ydx) + éx(v dy — tdz) + e3(v dt — tdz))
+ (tz — zy)(ny dt + Y1t dy)
+ (tz — xy) (61 (2 dt — ydx) + bi(tdz —x dy))
+ (tz — 2y) (62 (z dt — tdz) + do(z dy — ydz))

a 1

—1a with b+ ¢ = —2a

[F]: A=

This is the case of one pair of complex eigenvalues. Without loss of generality
we may assume, that the imaginary part of this eigenvalue is equal to 1. We
will see that in this case the symmetry in most cases is barely broken, i.e.
we will not add as many solutions to the generic case [F.1.1.1] as we did
before.

[F.1]: a,b,c nonzero
[F.1.1]: a,b,c distinct and nonzero
[F.1.1.1]: a,b, ¢ distinct, nonzero, a # —3b, —3c¢
The compatible one-form is
Or = yz(Vo(z dt — tda) + 91 (tdt +a dx)) + (2% + %) (V2y dz + 2z dy) (44)

and obeys dOy A dOr = 0 so that the associated Poisson structure is given
by

Iy = (Vg — Do) (£ + 22) 9y A By — 200y2 Dy A D,
— (ot — V12 + 2097)y O A 9y + (Dot — V1 4 2022)2 9 A D,
—(Yox + D1t — 209t)y Dy A By + (Yoz + V1t — 209t)2 8, A D,

[F.1.1.2]: a,b,c distinct, nonzero, a = —3b

In the case of one complex eigenvalue with nonzero imaginary part there is
no further contribution to the compatible one-form.
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[F.1.2l:a=b=—-1c#0

The only extra contributions to the compatible one-form [F.1.1.1] will be in
dy and dz:
0 = Op + % (ez dy + éy dz). (45)
Condition (ii) implies
(€ — 38)(g — V) = 0 (46)

and a new Poisson structure is given by 1 = vs:

g = ey?0; A O, — 200yz Oy N O,
+ (ot — V1 + 2027) (z O NDy —yd A By)
—i—(ﬁo&? + 91t — 2192t) (Z Ox N0y —y Oz A ay)

with € = 3€ — e.
[F.1.3]: a=—-b=—c#0
The compatible one-form is
0 = Op + (a1y? + aw2?)(x dt — tdx)
+ (G19% + @p2?)(tdt + zdx) + (22 +12)(Bry dy + Pozdz)  (47)
Inserting this into df A df = 0 yields
a1(b2 — B2) — aa(G1 — B1)
a1 (U + 92 — 01) + do(a1 — Br)
ag(W2 + Uy — V1) + Yo (b2 — B2)

0
0 (48)
0

Two sample solutions are

a. 190 =] = Q2 :0, ie.

IIp = (192 — 1§2)(t2 + 372) O N\ Oy
+((191 - 2192)y + 2(@2 - Bg)z) (.%' Oy N\ 8y —t0; A 8y)
+((01 — 209)z +2(61 — B1)y) (t0p AN D, — 0y A D)

b. &1 = B1, o = B2 and ¥ = Vo —|—’L§2, i.e.

Iy = 912 + 22) Oy A 9y — 2(Voyz + a1y® + a22?) 8y A 0,
—(Poyt + 2a02t + @xy) O N\ Oy + (Votz + 201yt — ’L§£L’Z) O N\ O,
—(Yoxy + 20022 — zg‘ty) Ox N\ Oy + (Vo2 + 200y + ﬁtz) Oy N O,
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with 9 = o — 192.
[F.2]: a=—3b#0and c=0
The compatible one-form is
0 = Op + U323 dz (49)
with Poisson structure IIg because d(z3dz) = 0.
[F.3]: a=0and b= —c
The compatible one-form is
0 = Op + 2y(vz dy + Ay dz) + (2° +12) (6 (x dt — tdz) + (¢t dt +x dzx)) (50)

The last term is a multiple of the derivative of (2 + 22)? so that it does
not enter the Poisson structure. the latter are singled out by the following
equations

6() =) =0
5(9y —13) =0 (51)
Jo(§ —7) =0

There are two new solutions, namely

a. § = ¥y = 0, which yields

Iy = (Fyz + (92 — 02)(t2 + 22)) A D
(91 — 2022)y & A By — (912 — 2092)2 O; A O,
— (91t — 209t)y Dy A Dy + (V1t — 209t)2 By A D,

and b. ¥y = U, 5 := 2(§ — 7) = 0 with

Iy = 2(26(t% + 22) — Yoyz) Oy A 0.
— (Yot — i + 2022)y Op A Oy + (Yot — Dz + 219233)2 O: N\ O,
—(Yox + D1t — 209t)y 8y A By + (Yox + V1t — 209t)2 8, A O,

[Fd]: a=b=c=0
The compatible one-form is
0 = OF + (a1y” + a22?) (zdt — tdz) + (Q1y® + 422”) (tdt + z dx)
+ (£ + 2%) (By dy + Bz d2) + 9323 dz + Ds3y> dy
+ (# +2?) (S(vdt — tdz) + (tdt + xdx)) + yz(yz dy + 4y dz)
+ ¢ (elz dy + é1y dz) + 22 (égz dy + €2y dz)

(52)
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The system on the coefficients obtained by (ii) is

03 =0
Q1% + 041(193 — 91 + 192) + 26(e1 — 3€1> =0

(
Qoo + ag(¥3 — U1 + Y2) + 20(eg — 3é3) =
(
(

2(y = A)Vo + a1(e2 — 3é2) — az(er — 3é1)

a1(€1 — 361

042(62 — 362

(61 — 3€1)190 + 2041(")/
(62 — 3€2)190 — 20&2(’7

o O O O o O©

)
)
(1bg — draz) — 20(y — 7)
)
)

and two Poisson structures are due to the following choices:

a. 0 =a; =t =0and % = Iy + U3

Iy = (sz —e1y? — Va3(t? + 2?) — ?yz)@t A Oy
+(2d1y — 19232) (t@x A Oy — 20 N az)
+(2d22 — 1923y) (a:(?t N Oy — 10z N 8y)

b. 19232641‘:@:;)/:0&11(1191:2793

H@ = ( — a1y2 — a222 — 4(5(t2 + $2) — 2190yz)8y A Bz
+(201y + Voz) (20, A O + 0y A Oz,)
— (2a2z + ﬁoy) (t@t N Oy + 20z N 8y)

a d
[G]: A=

[G.1]: a #0
The compatible one-form that obeys dO©g A d®g = 0 is given by

Oc = $Yoy* (v dt — tdx) + $919°(tdt + z dx)

20

(53)

+ 302(8 + 2?)(zdy — yd2) + 395(t* + 2®)ydy  (54)
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The Poisson structure determined by O¢g is

lg = Yoxy O A Oy — Doty Ou A Oy — Voy? Oy A 0, — I3(t% + 2%)0¢ A Oy
+(Doyt — Nyzx + Yaxz + V32y)0: A O,
+(Poyx + D1yt — Dotz — Vsty)0y A O,

[G.2]: a=0

The compatible one-form in this case has four additional terms, of which
two have vanishing derivative.

0=0¢g+ 1(t*+2°) (a(zdt — tdz) + &(tdt + z dz))
+ 18y (ydz — zdy) + vy’ dy  (55)
Condition (ii) implies

Oz,@ = Ozﬁg = 5190 =0 (56)

a. a =11y =0.

Iy = Yoy Oy N Oy — Yoty Oy N Oy — (U3(t% + 22) — By?)O A Oy
—(y — V22 — I3y)x Op N O, + (Phy — P2z — V3y)t O A O

b. B =13 =0.

Iy = Yoxy O A 9y — Doty Dy A Oy — (Voy? + a(t? + 22)) Oy A O,
+(Poyt — D1yzx + Vox2)0p A O, + (Voyzx + Y1yt — Jotz)0y A O,

a d
d a

[H]: A= 0 e with de # 0

[H.1]: a #0

[H.1.1]: a # 0 and d? # ¢?

The compatible one-form that obeys dOy A dOy = 0 is given by

O = s (y* + 25 (V1 (z dt — tdx) + Dy (tdt + z da))
+ %(t2 + $2)(192(Z dy —ydz) + ﬁg(y dy + zdz)) (57)
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with Poisson structure

g = -9 2+ x2)6t A0y — 1 (y2 + 22)8y A Oy

>
—

|
3

(

( Jo)xy — (U1ty + V922))0p N O,
(0 — Do)tz + (D122 + Vaty)) 0y A O,
( Juz — (V1tz — Vaxy))Op A Oy
(91 — Do)ty + (V12y — U9t2)) 0y N O

[H.1.2]: a # 0 and d? = ¢?
[H.1.2.1]: a #0and d =€
The compatible one-form is given by
On+ = On + 3(tz — zy) (ay (2 dt — ydz) + é4 (xdy — tdz))
+ (zz + ty) (B4 (2 dt — ydz) + By(zdy — tdz)) (58)
(ii) yields the system
(g & @y)” = 2(By + B1) (01 £ 02) + (g +aq) (D1 —da) = 0
4By £ B1)7 +2(B4 £ B1) (01 £ 02) — (ag £a4) (D1 —D2) =0
2y +ay)(By & By) + (g £ ay) (01 £ 92) +2(By £ B1) (1 —D2) =0
(59)
where we have to consider the upper sign. We find the sole solution
aptéy = By+pBy =0 (60)
This shows that IIg is not disturbed by the additional terms.
With these parameters the a-summand in (58) is proportional to d((tz —

my)z) so that this term does not contribute to the Poisson structure. The
latter is

My, = Iy + 6+<(t2 +22)0y A Oy — (42 + 22)0, A O,
F(ty = 22) (0 A D + 00 A Dy) + (2 + ) (90 A D = 9 1 9,))

[H.1.2.2]: a #0 and d = —e
The compatible one-form is given by
On- = Ou + 3(tz + zy) (a— (2 dt + ydz) + a_(z dy + t dz))
+ (xz — ty) (B-(zdt + ydz) + f_(xdy + tdz)) (61)
Using the lower sign in system (59) gives

A~

a_—G_ = B_—pB_ = 0. (62)
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and S_ is the only new parameter in the Poisson structure:

My = I + 6 <(t2 +22)0y A Oy + (42 + 22)0y A O,
~(ty +22) (D A D — 0 A Dy) — (wy — 12) (00 A D + 0 1 9,))

[H.2]: a =0
[H.2.1]: a =0, d> # (5 - 4)e? and €% # (5 £+ 4)d?

The compatible one-form 6 is given by

0 =Ou + O := On + 1(t* + 2?) (n(x dt — tdz) + H(tdt + x dz))
AP+ 2D (E(zdy —ydz) + E(ydy + 2d2))  (63)

The ~ -terms are total derivatives and are not important for the Poisson
structures. The latter are singled out by

n = ¥y = {91 = 0 (64)

There are two new solutions— symmetric with respect to interchanging (¢, x) <>
(y,2) — e.g. £ =2 = 0 with

Iy = —(n(t2 + 2%) + 91t + 2%)0y A O,
+( 192 Jx — 19175) (z@t N Oy — YOy N 8Z)
—l—( 792 t+ 19130) (yam A O, — 20, N 8y)

[H.2.2]: a =0 and d* = ¢?
[H.2.2.1]: a=0and d=e¢
The compatible one-form is given by
0 = Ouy + 69
+ (8 + 2?)(61(2 dt — ydx) + Sa(y dt + z dx))
+ (e1(zz + ty) + e2(zy — t2)) (x dt — tdx)
+ (P +2 )(51(xdy—tdz)+52(tdy+xdz) (65)
+ (&1(zz + ty) + é2(xt — y2)) (2 dy — y dz)
+ (P + 2 (G2 dt — ydz) + Co(y dt + 2 dx))
+ (2 +2?) (G(ady — td2) + G(tdy + 2 dz))

[H.2.2.2]: a=0and d = —e
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The compatible one-form is given by
0 = Ou-_ + O
+ (8 +2?)(61(2 dt + y dx) + S2(y dt — z dx)
+ (e1(zz — ty) + e2(xy + t2)) (v dt — t dx)
+ (W2 + 22 (01 (zdy + tdz) + ba(t dy — x d2) (66)
+ (é1(zz — ty) + é2(at + y2)) (2 dy — y dz)
+ (Y + 2 (G(zdt + ydo) + G(y dt — 2 dz))
+ (2 + 2)(@(56 dy + tdz) + Co(t dy — zdz))
[H.2.3]: a =0 and €? = 9d?
We obtain the case d?> = 9¢? by renaming the coordinates.
[H.2.3.1]: a =0 and e = 3d
The compatible one-form is
0 = Ou + O
+ a((tz — zy)(tdt — xdz) — (zz + ty)(z dt + tdz))
+ B((tz — zy)(z dt + tdz) + (zz + ty)(tdt — x dx)) (67)
+ & ((:U2 —3tHady + (2 — 32?)t dz)
B((tz —32%)tdy — (2% — 3t*)x dz)

[H.2.3.2]: a =0 and e = —3d
The compatible one-form is
6 =0+ 06
+ a((tz + zy)(tdt — xdz) — (zz — ty)(x dt + tdz))
+ B((tz + zy)(z dt + tdz) + (zz — ty)(tdt — x dx)) (68)
((;E — 3tz dy — (t* — 32%)t dz)
((t2 32%)tdy + (2% — 3t%)x d2)

To get the Poisson structures from 6 in the cases d = £3e the coeflicients
have to obey

€91 = 0
n§ =0
(@ F34)%+ (BF38)* Fan =0 (69)

(@ F3a) (91 £92) — (BF3B) (D2 — 1) =0
(BF 38) (01 + ¥a) + ( F 38) (g — 01) = 0
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From the last two equations we get that 8 = 8 F 3B and o = o F 3& can

only be chosen non trivial if ¥ 45 = 9 — U1 = 0. We are left with [H.1.1]
forn =¢ =0 and [H.2.1] for 9, = n =0 or ¥ = £ = 0, because of the third

equation.

The only new Poisson structure is given by ¢ + 99 = I ¢ =0and
n2 = 0 with o + 5% = £an

[y = —9o(t2 + 22)0y N Oy — (191(y2 +2%) + 77(152 + xz))ay A 0,
+ (91 (ty F 2z) + 2Btz + o(t* — 2?))0; A
— (1 (zz F ty) + 2Btz + a(t? — 22))0, A Oy
— (% (tz £ zy) + 2atx — B(t* — 22)) 0, A
+ (1 (zy £ t2) — 2atz + B(t? — 2%)) 0y A O,
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